Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.409
Filtrar
1.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(2): 228-231, 2024 Mar 30.
Artigo em Chinês | MEDLINE | ID: mdl-38605627

RESUMO

The design and development of electrocardiogram(ECG) monitoring cloud platform based on the Internet of Things(IoT) electrocardiograph is introduced. The platform is mainly composed of ECG acquisition module, algorithm module, diagnostic model comparison module, warning module, positioning module and medical aid system. The ECG acquisition module collects ECG signals of patients and displays them in real time on the mobile terminals. Then they are uploaded to the ECG monitoring cloud platform through the IoT. The algorithm module and the diagnostic model comparison module mark, process, analyze and diagnose the ECG. Meanwhile, the ECG diagnosis and warning results are pushed to patients and 120 emergency centers through the IoT. Furthermore, the cloud platform will guide patients to self-rescue and the emergency platform will open the green channel to save patients in time.The platform realizes from the onset to diagnosis and treatment in one step, and saves lives against time.


Assuntos
Computação em Nuvem , Internet das Coisas , Humanos , Eletrocardiografia , Algoritmos , Internet
2.
Environ Monit Assess ; 196(5): 438, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592580

RESUMO

Advanced sensor technology, especially those that incorporate artificial intelligence (AI), has been recognized as increasingly important in various contemporary applications, including navigation, automation, water under imaging, environmental monitoring, and robotics. Data-driven decision-making and higher efficiency have enabled more excellent infrastructure thanks to integrating AI with sensors. The agricultural sector is one such area that has seen significant promise from this technology using the Internet of Things (IoT) capabilities. This paper describes an intelligent system for monitoring and analyzing agricultural environmental conditions, including weather, soil, and crop health, that uses internet-connected sensors and equipment. This work makes two significant contributions. It first makes it possible to use sensors linked to the IoT to accurately monitor the environment remotely. Gathering and analyzing data over time may give us valuable insights into daily fluctuations and long-term patterns. The second benefit of AI integration is the remote control; it provides for essential activities like irrigation, pest management, and disease detection. The technology can optimize water usage by tracking plant development and health and adjusting watering schedules accordingly. Intelligent Control Systems (Matlab/Simulink Ver. 2022b) use a hybrid controller that combines fuzzy logic with standard PID control to get high-efficiency performance from water pumps. In addition to monitoring crops, smart cameras allow farmers to make real-time adjustments based on soil moisture and plant needs. Potentially revolutionizing contemporary agriculture, this revolutionary approach might boost production, sustainability, and efficiency.


Assuntos
Inteligência Artificial , Internet das Coisas , Computação em Nuvem , Monitoramento Ambiental , Agricultura , Inteligência , Solo , Água , Abastecimento de Água
3.
PLoS One ; 19(4): e0301760, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625954

RESUMO

Cloud computing alludes to the on-demand availability of personal computer framework resources, primarily information storage and processing power, without the customer's direct personal involvement. Cloud computing has developed dramatically among many organizations due to its benefits such as cost savings, resource pooling, broad network access, and ease of management; nonetheless, security has been a major concern. Researchers have proposed several cryptographic methods to offer cloud data security; however, their execution times are linear and longer. A Security Key 4 Optimization Algorithm (SK4OA) with a non-linear run time is proposed in this paper. The secret key of SK4OA determines the run time rather than the size of the data as such is able to transmit large volumes of data with minimal bandwidth and able to resist security attacks like brute force since its execution timings are unpredictable. A data set from Kaggle was used to determine the algorithm's mean and standard deviation after thirty (30) times of execution. Data sizes of 3KB, 5KB, 8KB, 12KB, and 16 KB were used in this study. There was an empirical analysis done against RC4, Salsa20, and Chacha20 based on encryption time, decryption time, throughput and memory utilization. The analysis showed that SK4OA generated lowest mean non-linear run time of 5.545±2.785 when 16KB of data was executed. Additionally, SK4OA's standard deviation was greater, indicating that the observed data varied far from the mean. However, RC4, Salsa20, and Chacha20 showed smaller standard deviations making them more clustered around the mean resulting in predictable run times.


Assuntos
Algoritmos , Armazenamento e Recuperação da Informação , Computação em Nuvem , Segurança Computacional , Microcomputadores
4.
Acta Neuropathol Commun ; 12(1): 51, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576030

RESUMO

DNA methylation analysis based on supervised machine learning algorithms with static reference data, allowing diagnostic tumour typing with unprecedented precision, has quickly become a new standard of care. Whereas genome-wide diagnostic methylation profiling is mostly performed on microarrays, an increasing number of institutions additionally employ nanopore sequencing as a faster alternative. In addition, methylation-specific parallel sequencing can generate methylation and genomic copy number data. Given these diverse approaches to methylation profiling, to date, there is no single tool that allows (1) classification and interpretation of microarray, nanopore and parallel sequencing data, (2) direct control of nanopore sequencers, and (3) the integration of microarray-based methylation reference data. Furthermore, no software capable of entirely running in routine diagnostic laboratory environments lacking high-performance computing and network infrastructure exists. To overcome these shortcomings, we present EpiDiP/NanoDiP as an open-source DNA methylation and copy number profiling suite, which has been benchmarked against an established supervised machine learning approach using in-house routine diagnostics data obtained between 2019 and 2021. Running locally on portable, cost- and energy-saving system-on-chip as well as gpGPU-augmented edge computing devices, NanoDiP works in offline mode, ensuring data privacy. It does not require the rigid training data annotation of supervised approaches. Furthermore, NanoDiP is the core of our public, free-of-charge EpiDiP web service which enables comparative methylation data analysis against an extensive reference data collection. We envision this versatile platform as a useful resource not only for neuropathologists and surgical pathologists but also for the tumour epigenetics research community. In daily diagnostic routine, analysis of native, unfixed biopsies by NanoDiP delivers molecular tumour classification in an intraoperative time frame.


Assuntos
Epigenômica , Neoplasias , Humanos , Aprendizado de Máquina não Supervisionado , Computação em Nuvem , Neoplasias/diagnóstico , Neoplasias/genética , Metilação de DNA
5.
PLoS One ; 19(3): e0301273, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38547231

RESUMO

This paper presents a custom made small rover based surveying, mapping and building information modeling solution. Majority of the commercially available mobile surveying systems are larger in size which restricts their maneuverability in the targeted indoor vicinities. Furthermore their functional cost is unaffordable for low budget projects belonging to developing markets. Keeping in view these challenges, an economical indigenous rover based scanning and mapping system has developed using orthogonal integration of two low cost RPLidar A1 laser scanners. All the instrumentation of the rover has been interfaced with Robot Operating System (ROS) for online processing and recording of all sensorial data. The ROS based pose and map estimations of the rover have performed using Simultaneous Localization and Mapping (SLAM) technique. The perceived class 1 laser scans data belonging to distinct vicinities with variable reflective properties have been successfully tested and validated for required structural modeling. Systematically the recorded scans have been used in offline mode to generate the 3D point cloud map of the surveyed environment. Later the structural planes extraction from the point cloud data has been done using Random Sampling and Consensus (RANSAC) technique. Finally the 2D floor plan and 3D building model have been developed using point cloud processing in appropriate software. Multiple interiors of existing buildings and under construction indoor sites have been scanned, mapped and modelled as presented in this paper. In addition, the validation of the as-built models have been performed by comparing with the actual architecture design of the surveyed buildings. In comparison to available surveying solutions present in the local market, the developed system has been found faster, accurate and user friendly to produce more enhanced structural results with minute details.


Assuntos
Orçamentos , Computação em Nuvem , Espécies Reativas de Oxigênio , Consenso , Lasers
6.
PLoS One ; 19(3): e0298582, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38466691

RESUMO

With the outbreak of the COVID-19 pandemic, social isolation and quarantine have become commonplace across the world. IoT health monitoring solutions eliminate the need for regular doctor visits and interactions among patients and medical personnel. Many patients in wards or intensive care units require continuous monitoring of their health. Continuous patient monitoring is a hectic practice in hospitals with limited staff; in a pandemic situation like COVID-19, it becomes much more difficult practice when hospitals are working at full capacity and there is still a risk of medical workers being infected. In this study, we propose an Internet of Things (IoT)-based patient health monitoring system that collects real-time data on important health indicators such as pulse rate, blood oxygen saturation, and body temperature but can be expanded to include more parameters. Our system is comprised of a hardware component that collects and transmits data from sensors to a cloud-based storage system, where it can be accessed and analyzed by healthcare specialists. The ESP-32 microcontroller interfaces with the multiple sensors and wirelessly transmits the collected data to the cloud storage system. A pulse oximeter is utilized in our system to measure blood oxygen saturation and body temperature, as well as a heart rate monitor to measure pulse rate. A web-based interface is also implemented, allowing healthcare practitioners to access and visualize the collected data in real-time, making remote patient monitoring easier. Overall, our IoT-based patient health monitoring system represents a significant advancement in remote patient monitoring, allowing healthcare practitioners to access real-time data on important health metrics and detect potential health issues before they escalate.


Assuntos
Computação em Nuvem , Internet das Coisas , Humanos , Pandemias , Monitorização Fisiológica , Armazenamento e Recuperação da Informação
7.
Int J Neural Syst ; 34(5): 2450026, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490957

RESUMO

The global trend of increasing life expectancy introduces new challenges with far-reaching implications. Among these, the risk of falls among older adults is particularly significant, affecting individual health and the quality of life, and placing an additional burden on healthcare systems. Existing fall detection systems often have limitations, including delays due to continuous server communication, high false-positive rates, low adoption rates due to wearability and comfort issues, and high costs. In response to these challenges, this work presents a reliable, wearable, and cost-effective fall detection system. The proposed system consists of a fit-for-purpose device, with an embedded algorithm and an Inertial Measurement Unit (IMU), enabling real-time fall detection. The algorithm combines a Threshold-Based Algorithm (TBA) and a neural network with low number of parameters based on a Transformer architecture. This system demonstrates notable performance with 95.29% accuracy, 93.68% specificity, and 96.66% sensitivity, while only using a 0.38% of the trainable parameters used by the other approach.


Assuntos
Acidentes por Quedas , Computação em Nuvem , Qualidade de Vida , Redes Neurais de Computação , Algoritmos
8.
Eur J Med Res ; 29(1): 201, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528564

RESUMO

Big data technologies have proliferated since the dawn of the cloud-computing era. Traditional data storage, extraction, transformation, and analysis technologies have thus become unsuitable for the large volume, diversity, high processing speed, and low value density of big data in medical strategies, which require the development of novel big data application technologies. In this regard, we investigated the most recent big data platform breakthroughs in anesthesiology and designed an anesthesia decision model based on a cloud system for storing and analyzing massive amounts of data from anesthetic records. The presented Anesthesia Decision Analysis Platform performs distributed computing on medical records via several programming tools, and provides services such as keyword search, data filtering, and basic statistics to reduce inaccurate and subjective judgments by decision-makers. Importantly, it can potentially to improve anesthetic strategy and create individualized anesthesia decisions, lowering the likelihood of perioperative complications.


Assuntos
Anestesia , Anestesiologia , Anestésicos , Humanos , Big Data , Computação em Nuvem , Técnicas de Apoio para a Decisão
9.
Trials ; 25(1): 214, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528619

RESUMO

BACKGROUND: Endovascular repair of aortic aneurysmal disease is established due to perceived advantages in patient survival, reduced postoperative complications, and shorter hospital lengths of stay. High spatial and contrast resolution 3D CT angiography images are used to plan the procedures and inform device selection and manufacture, but in standard care, the surgery is performed using image-guidance from 2D X-ray fluoroscopy with injection of nephrotoxic contrast material to visualise the blood vessels. This study aims to assess the benefit to patients, practitioners, and the health service of a novel image fusion medical device (Cydar EV), which allows this high-resolution 3D information to be available to operators at the time of surgery. METHODS: The trial is a multi-centre, open label, two-armed randomised controlled clinical trial of 340 patient, randomised 1:1 to either standard treatment in endovascular aneurysm repair or treatment using Cydar EV, a CE-marked medical device comprising of cloud computing, augmented intelligence, and computer vision. The primary outcome is procedural time, with secondary outcomes of procedural efficiency, technical effectiveness, patient outcomes, and cost-effectiveness. Patients with a clinical diagnosis of AAA or TAAA suitable for endovascular repair and able to provide written informed consent will be invited to participate. DISCUSSION: This trial is the first randomised controlled trial evaluating advanced image fusion technology in endovascular aortic surgery and is well placed to evaluate the effect of this technology on patient outcomes and cost to the NHS. TRIAL REGISTRATION: ISRCTN13832085. Dec. 3, 2021.


Assuntos
Aneurisma da Aorta Abdominal , Implante de Prótese Vascular , Procedimentos Endovasculares , Humanos , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Aneurisma da Aorta Abdominal/cirurgia , Análise Custo-Benefício , Computação em Nuvem , Procedimentos Endovasculares/métodos , Implante de Prótese Vascular/efeitos adversos , Resultado do Tratamento , Estudos Retrospectivos , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto
10.
Sci Rep ; 14(1): 7147, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532119

RESUMO

E-health has become a top priority for healthcare organizations focused on advancing healthcare services. Thus, medical organizations have been widely adopting cloud services, resulting in the effective storage of sensitive data. To prevent privacy and security issues associated with the data, attribute-based encryption (ABE) has been a popular choice for encrypting private data. Likewise, the attribute-based access control (ABAC) technique has been widely adopted for controlling data access. Researchers have proposed electronic health record (EHR) systems using ABE techniques like ciphertext policy attribute-based encryption (CP-ABE), key policy attribute-based encryption (KP-ABE), and multi authority attribute-based encryption (MA-ABE). However, there is a lack of rigorous comparison among the various ABE schemes used in healthcare systems. To better understand the usability of ABE techniques in medical systems, we performed a comprehensive review and evaluation of the three popular ABE techniques by developing EHR systems using knowledge graphs with the same data but different encryption mechanisms. We have used the MIMIC-III dataset with varying record sizes for this study. This paper can help healthcare organizations or researchers using ABE in their systems to comprehend the correct usage scenario and the prospect of ABE deployment in the most recent technological evolution.


Assuntos
Registros Eletrônicos de Saúde , Armazenamento e Recuperação da Informação , Algoritmos , Segurança Computacional , Computação em Nuvem , Atenção à Saúde
11.
Comput Biol Med ; 172: 108152, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452470

RESUMO

Healthcare has significantly contributed to the well-being of individuals around the globe; nevertheless, further benefits could be derived from a more streamlined healthcare system without incurring additional costs. Recently, the main attributes of cloud computing, such as on-demand service, high scalability, and virtualization, have brought many benefits across many areas, especially in medical services. It is considered an important element in healthcare services, enhancing the performance and efficacy of the services. The current state of the healthcare industry requires the supply of healthcare products and services, increasing its viability for everyone involved. Developing new approaches for discovering and selecting healthcare services in the cloud has become more critical due to the rising popularity of these kinds of services. As a result of the diverse array of healthcare services, service composition enables the execution of intricate operations by integrating multiple services' functionalities into a single procedure. However, many methods in this field encounter several issues, such as high energy consumption, cost, and response time. This article introduces a novel layered method for selecting and evaluating healthcare services to find optimal service selection and composition solutions based on Deep Reinforcement Learning (Deep RL), Kalman filtering, and repeated training, addressing the aforementioned issues. The results revealed that the proposed method has achieved acceptable results in terms of availability, reliability, energy consumption, and response time when compared to other methods.


Assuntos
Computação em Nuvem , Atenção à Saúde , Humanos , Reprodutibilidade dos Testes
12.
J Med Syst ; 48(1): 33, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526807

RESUMO

In today's data-driven world, the exponential growth of digital information poses significant challenges in data management. In recent years, the adoption of cloud-based Electronic Health Records (EHR) sharing schemes has yielded numerous advantages like improved accessibility, availability, and enhanced interoperability. However, the centralized nature of cloud storage presents challenges in terms of information storage, privacy protection, and security. Despite several approaches that have been presented to ensure secure deduplication of similar EHRs, the validation of data integrity without a third-party auditor (TPA) remains a persistent task. Because involving a TPA raises concerns about the confidentiality and privacy of crucial healthcare information. To tackle this challenge, a novel cloud storage auditing technique is proposed that incorporates cross-patient block-level deduplication while upholding strong privacy protection, ensuring that EHR is not compromised. Here, we introduced blockchain technology to achieve integrity verification, thus eliminating the need for a TPA by providing a decentralized and transparent mechanism. Additionally, an index for all EHRs has been generated to facilitate block-level duplicate checks and employ a novel strategy to prevent adversaries from acquiring original information saved in the cloud storage. The security of the proposed approach is established against factorization attacks and decrypt exponent attacks. The performance evaluation demonstrates the superior efficiency of the proposed scheme in terms of file authenticator generation, challenge creation, and proof verification to other existing client-side deduplication approaches.


Assuntos
Blockchain , Registros Eletrônicos de Saúde , Humanos , Computação em Nuvem , Segurança Computacional , Privacidade
13.
J Phys Chem B ; 128(13): 3211-3219, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38514440

RESUMO

Binding site prediction is a crucial step in understanding protein-ligand and protein-protein interactions (PPIs) with broad implications in drug discovery and bioinformatics. This study introduces Colabind, a robust, versatile, and user-friendly cloud-based approach that employs coarse-grained molecular dynamics simulations in the presence of molecular probes, mimicking fragments of drug-like compounds. Our method has demonstrated high effectiveness when validated across a diverse range of biological targets spanning various protein classes, successfully identifying orthosteric binding sites, as well as known druggable allosteric or PPI sites, in both experimentally determined and AI-predicted protein structures, consistently placing them among the top-ranked sites. Furthermore, we suggest that careful inspection of the identified regions with a high affinity for specific probes can provide valuable insights for the development of pharmacophore hypotheses. The approach is available at https://github.com/porekhov/CG_probeMD.


Assuntos
Computação em Nuvem , Sondas Moleculares , Sítios de Ligação , Proteínas/química , Simulação de Dinâmica Molecular , Ligação Proteica , Ligantes
14.
Neural Netw ; 173: 106158, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38340470

RESUMO

Keypoints extraction from 3D objects is a fundamental task in point cloud processing. The ideal keypoints should be an ordered and well-aligned set of points that effectively reflect the shape and structure of the object. To this end, this paper proposes an unsupervised 3D point cloud keypoints generation network with the consideration of the probability distribution of keypoints and spatial distribution among keypoints. The network downsamples and groups the 3D point cloud, obtaining local features of the point cloud. The local features are leveraged to explicitly learn the mixture probability distribution of keypoint position. A composite loss function that comprehensively considers shape similarity, point importance, and geometric constraint is proposed to guide the network in generating keypoints with semantic consistency and regular spatial distribution. The experimental results and quantitative comparisons on the ShapeNet and KeypointNet datasets demonstrate that the proposed method achieves ordered, well-aligned, and robust keypoints generation for 3D point clouds. The source code of the proposed method is available at https://github.com/djzgroup/Keypoints.


Assuntos
Computação em Nuvem , Aprendizagem , Probabilidade , Semântica , Software
15.
Sensors (Basel) ; 24(4)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38400338

RESUMO

In order to achieve the Sustainable Development Goals (SDG), it is imperative to ensure the safety of drinking water. The characteristics of each drinkable water, encompassing taste, aroma, and appearance, are unique. Inadequate water infrastructure and treatment can affect these features and may also threaten public health. This study utilizes the Internet of Things (IoT) in developing a monitoring system, particularly for water quality, to reduce the risk of contracting diseases. Water quality components data, such as water temperature, alkalinity or acidity, and contaminants, were obtained through a series of linked sensors. An Arduino microcontroller board acquired all the data and the Narrow Band-IoT (NB-IoT) transmitted them to the web server. Due to limited human resources to observe the water quality physically, the monitoring was complemented by real-time notifications alerts via a telephone text messaging application. The water quality data were monitored using Grafana in web mode, and the binary classifiers of machine learning techniques were applied to predict whether the water was drinkable or not based on the data collected, which were stored in a database. The non-decision tree, as well as the decision tree, were evaluated based on the improvements of the artificial intelligence framework. With a ratio of 60% for data training: at 20% for data validation, and 10% for data testing, the performance of the decision tree (DT) model was more prominent in comparison with the Gradient Boosting (GB), Random Forest (RF), Neural Network (NN), and Support Vector Machine (SVM) modeling approaches. Through the monitoring and prediction of results, the authorities can sample the water sources every two weeks.


Assuntos
Água Potável , Internet das Coisas , Humanos , Inteligência Artificial , Computação em Nuvem , Confiabilidade dos Dados
16.
Acta Crystallogr D Struct Biol ; 80(Pt 3): 174-180, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38376453

RESUMO

Electron cryo-microscopy image-processing workflows are typically composed of elements that may, broadly speaking, be categorized as high-throughput workloads which transition to high-performance workloads as preprocessed data are aggregated. The high-throughput elements are of particular importance in the context of live processing, where an optimal response is highly coupled to the temporal profile of the data collection. In other words, each movie should be processed as quickly as possible at the earliest opportunity. The high level of disconnected parallelization in the high-throughput problem directly allows a completely scalable solution across a distributed computer system, with the only technical obstacle being an efficient and reliable implementation. The cloud computing frameworks primarily developed for the deployment of high-availability web applications provide an environment with a number of appealing features for such high-throughput processing tasks. Here, an implementation of an early-stage processing pipeline for electron cryotomography experiments using a service-based architecture deployed on a Kubernetes cluster is discussed in order to demonstrate the benefits of this approach and how it may be extended to scenarios of considerably increased complexity.


Assuntos
Processamento de Imagem Assistida por Computador , Software , Processamento de Imagem Assistida por Computador/métodos , Microscopia Crioeletrônica/métodos , Fluxo de Trabalho , Computação em Nuvem
18.
PLoS Comput Biol ; 20(2): e1011270, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38324613

RESUMO

CyVerse, the largest publicly-funded open-source research cyberinfrastructure for life sciences, has played a crucial role in advancing data-driven research since the 2010s. As the technology landscape evolved with the emergence of cloud computing platforms, machine learning and artificial intelligence (AI) applications, CyVerse has enabled access by providing interfaces, Software as a Service (SaaS), and cloud-native Infrastructure as Code (IaC) to leverage new technologies. CyVerse services enable researchers to integrate institutional and private computational resources, custom software, perform analyses, and publish data in accordance with open science principles. Over the past 13 years, CyVerse has registered more than 124,000 verified accounts from 160 countries and was used for over 1,600 peer-reviewed publications. Since 2011, 45,000 students and researchers have been trained to use CyVerse. The platform has been replicated and deployed in three countries outside the US, with additional private deployments on commercial clouds for US government agencies and multinational corporations. In this manuscript, we present a strategic blueprint for creating and managing SaaS cyberinfrastructure and IaC as free and open-source software.


Assuntos
Inteligência Artificial , Software , Humanos , Computação em Nuvem , Editoração
19.
Math Biosci Eng ; 21(1): 650-678, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38303438

RESUMO

In recent years, the growing pervasiveness of wearable technology has created new opportunities for medical and emergency rescue operations to protect users' health and safety, such as cost-effective medical solutions, more convenient healthcare and quick hospital treatments, which make it easier for the Internet of Medical Things (IoMT) to evolve. The study first presents an overview of the IoMT before introducing the IoMT architecture. Later, it portrays an overview of the core technologies of the IoMT, including cloud computing, big data and artificial intelligence, and it elucidates their utilization within the healthcare system. Further, several emerging challenges, such as cost-effectiveness, security, privacy, accuracy and power consumption, are discussed, and potential solutions for these challenges are also suggested.


Assuntos
Inteligência Artificial , Internet das Coisas , Big Data , Computação em Nuvem , Internet
20.
Sensors (Basel) ; 24(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339704

RESUMO

This paper introduces an approach to the automated measurement and analysis of dairy cows using 3D point cloud technology. The integration of advanced sensing techniques enables the collection of non-intrusive, precise data, facilitating comprehensive monitoring of key parameters related to the health, well-being, and productivity of dairy cows. The proposed system employs 3D imaging sensors to capture detailed information about various parts of dairy cows, generating accurate, high-resolution point clouds. A robust automated algorithm has been developed to process these point clouds and extract relevant metrics such as dairy cow stature height, rump width, rump angle, and front teat length. Based on the measured data combined with expert assessments of dairy cows, the quality indices of dairy cows are automatically evaluated and extracted. By leveraging this technology, dairy farmers can gain real-time insights into the health status of individual cows and the overall herd. Additionally, the automated analysis facilitates efficient management practices and optimizes feeding strategies and resource allocation. The results of field trials and validation studies demonstrate the effectiveness and reliability of the automated 3D point cloud approach in dairy farm environments. The errors between manually measured values of dairy cow height, rump angle, and front teat length, and those calculated by the auto-measurement algorithm were within 0.7 cm, with no observed exceedance of errors in comparison to manual measurements. This research contributes to the burgeoning field of precision livestock farming, offering a technological solution that not only enhances productivity but also aligns with contemporary standards for sustainable and ethical animal husbandry practices.


Assuntos
Computação em Nuvem , Aprendizado Profundo , Feminino , Bovinos , Animais , Reprodutibilidade dos Testes , Indústria de Laticínios/métodos , Tecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...